Synthesis of Isothiocyanato-1-[1-(2-benzo[b]thienyl)cyclohexyl]piperidines, Potential Irreversible Ligands at the Dopamine Re-uptake Site

Brian de Costa, ${ }^{a}$ Clifford George ${ }^{b}$ and Celia Dominguez ${ }^{a}$
${ }^{a}$ Laboratory of Medicinal Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892, USA
${ }^{\text {b }}$ Naval Research Laboratory, Washington DC 20375, USA

Abstract

Isomeric isothiocyanate derivatives 2-7 of the potent dopamine re-uptake (DA) inhibitor 1- [1-(2-benzo[b]thienyl)cyclohexyl]piperidine (BTCP 1) have been synthesized as potential irreversible ligands for this site. $\mathrm{NaNO}_{2}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ provided a mild procedure for mononitration of the benzo[b]thienyl ring of 1 as a route to aryl isothiocyanates 5-7. Novel methodology, utilizing 3,3-ethylene-dioxypentane-1,5-diol dimethanesulfonate ester is described for the synthesis of piperidone 13, a precursor for 4 - isothiocyanatopiperidine 2. NaBH_{4} or LiAlH_{4} reduction of 4-(2-benzo[b]thienyl)-4hydroxycyclohexanone 18 and 4-(2-benzo[b]thienyl)-4-(piperidino)cyclohexanone oxime 35 gives the corresponding cis-diol 21 and cis-cyclohexane-1,4-diamine 36 as the major isomers which have been investigated as precursors to the cyclohexane ring isothiocyanates 3 and 4. Alternative routes to 3 and 4 are compared and their stereochemical outcome investigated.

Cocaine is a major drug of abuse resulting in a number of fatalities and hospital emergencies. This and related compounds exert their behavioural effects at the dopamine (DA) transport complex by markedly increasing extracellular dopamine levels as they are potent inhibitors of DA-reuptake into dopaminergic neurons in the brain. ${ }^{1}$ Several other classes of compounds including disubstituted piperazines (BGR 12909 and 12935), ${ }^{2}$ 1-[1-(2-benzo[b]thienyl)cyclohexyl]piperidine 1 (BTCP) ${ }^{3}$ and nomifensine ${ }^{4}$ are known to interact at binding sites on the DAreuptake site. Irreversible ligands have proven to be valuable tools in the determination of the structure and function of receptors (for a review, see ref. 5). We aimed, therefore, to synthesize potential irreversible ligands based upon the highly selective and potent DA-reuptake ligand, BTCP 1. ${ }^{3.6}$ The isothiocyanate ($\mathrm{N}=\mathrm{C}=\mathrm{S}$) group, among others, has proven suitable in the development of a variety of irreversible ligands. ${ }^{5}$ Here we report the synthesis and characterization of isomeric isothiocyanate ($\mathrm{N}=\mathrm{C}=\mathrm{S}$) congeners 2-7 of BTCP. The NCS analogues were selected in such a way as to utilize all three ring systems of 1 in order to probe the BTCP binding site for a suitably located nucleophile.
The isothiocyanate 2 (Scheme 1) was obtained in eight steps starting with cyclohexanone 8 . Condensation of 8 with 2-benzo-

54^{\prime}-NCS

2
$3 \mathrm{R}^{1}=\mathrm{NCS}, \mathrm{R}^{2}=\mathrm{H}$ $4 R^{1}=H, R^{2}=N C S$

77^{\prime}-NCS

2-BT $=2-$ benzo $[b]$ thienyl, $P i p=$ piperidino
[b] thienyllithium ${ }^{7}$ (quantitative) followed by HN_{3} solvolysis, ${ }^{8}$ LiAlH_{4} reduction and coupling with 1,5 -dibromopentane ${ }^{8}$ furnished BTCP 1 in 71% yield. Synthesis of 1 has been previously described but no synthetic details given. ${ }^{3}$ Compound 1 was used as a precursor for aryl isothiocyanate analogues 5-7 of BTCP (see Scheme 5). Condensation of primary amine 11 with 3,3-ethylenedioxypentane-1,5-diol dimethanesulfonate ester ${ }^{9}$ (Scheme 1) afforded the intermediate ethylene ketal 12 in 89% yield which on acid hydrolysis (65% yield), oximation (quantitative) and LiAlH_{4} reduction furnished the amine 15 in 90% yield. Treatment with thiophosgene $\left(\mathrm{CSCl}_{2}\right)^{10}$ gave the isothiocyanate $2 \mathrm{in} 81 \%$ yield. The IR spectrum of 2 exhibited a strong band at $2095 \mathrm{~cm}^{-1}$ characteristic of the NCS function.

2-BT $=$ 2-benzo $[b]$ thienyl, Pip $=$ piperidino
Scheme 1 i, 2-Benzo [b]thienyllithium, $\mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{NaN}_{3}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, CHCl_{3}; iii, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$; iv, 1,5-dibromopentane, DMF, $60^{\circ} \mathrm{C}$; $\mathrm{v}, \mathrm{K}_{2} \mathrm{CO}_{3}$; vi, 3,3-ethylenedioxypentane-1,5-diol dimethanesulfonate ester, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $60^{\circ} \mathrm{C}$; vii, $\mathrm{HCl}\left(6 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right), 60^{\circ} \mathrm{C}$; viii, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{NaOAc}, \mathrm{EtOH}$; ix, $\mathrm{LiAlH}_{4}, \mathrm{THF}$; x, CSCl_{2}, sat. aq. $\mathrm{NaHCO}_{3}, \mathrm{CHCl}_{3}$

Cyclohexyl isothiocyanate derivatives 3 and 4 were obtained starting from cyclohexanedione monoethylene ketal 16 (Schemes 2 and 4). Condensation with benzo $[b]$ thienyllithium afforded the tertiary alcohol $\mathbf{1 7}^{11}$ (Scheme 2) in quantitative

2-BT $=$ 2-benzo $(b]$ thienyl, $\mathrm{Pip}=$ piperidino
Scheme 2 i, 2-Benzo[b]thienyllithium, $\mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}(4: 1), 55^{\circ} \mathrm{C}$; iii, $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$; iv, $\mathrm{NaN}_{3}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CHCl}_{3} ; \mathrm{H}_{2}, 10 \% \mathrm{Pd}^{2} \mathrm{C}$, $\mathrm{HCl}, \mathrm{EtOH} ; \mathrm{v}, 1,5$-dibromopentane, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 55^{\circ} \mathrm{C}, 7 \mathrm{~d}$; vi, $\mathrm{NaN}_{3}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C} ;$ vii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CHCl}_{3}, 5^{\circ} \mathrm{C} ; \mathrm{viii}, \mathrm{H}_{2}, 10^{\circ} \% \mathrm{Pd} / \mathrm{C}$, MeOH ; ix, 1,5 -dibromopentane, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $50^{\circ} \mathrm{C}, 48 \mathrm{~h}$; x, $\mathrm{MsCl}^{\circ} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF} ; \mathrm{xi}, \mathrm{NaN}, \mathrm{DMF}, 85^{\circ} \mathrm{C} ;$ xii, $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{HCl}, \mathrm{MeOH} ; \mathrm{xiii}, \mathrm{CSCl}{ }_{2}$, sat. aq. $\mathrm{NaHCO}_{3}, \mathrm{CHCl}_{3}$; xiv (i) $\mathrm{Ms}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CHCl}_{3}$, (ii) CHCl_{3}-aq. NaOH
yield which on hydrolysis with acetic acid-water (4:1) at $55^{\circ} \mathrm{C}$ gave the ketone 18 in high yield; attempts to hydrolyse the ketal 17 using 88% formic acid at $20^{\circ} \mathrm{C}$ or MeOH -aqueous HCl resulted in elimination of the benzylic hydroxy and a low yield of 18. Treatment of 18 with HN_{3} followed by catalytic hydrogenation afforded 75% overall (from 18) yield of the amino ketone 19. Examination of the base form of 19 by IR spectroscopy revealed a free keto group ($1709 \mathrm{~cm}^{-1}$). No hemiaminal formation was evident at room temperature. However, 19 proved unreactive towards 1,5 -dibromopentane (several days reaction at $55^{\circ} \mathrm{C}$) presumably due to a dipolar interaction of the nitrogen lone-pair of electrons with the carbonyl group. This is in contrast to the facile reaction observed between 11 and 1,5-dibromopentane (Scheme 1). Synthesis of 3 and 4 via 19 was, therefore, not possible.

Reduction of 18 with NaBH_{4} in MeOH (Scheme 2) resulted in a $1: 4$ mixture of the trans- $\mathbf{2 0}$ and cis- $\mathbf{2 1}$ diols. The proton α to the hydroxy group of the trans-diol 20 exhibited a relatively compact ($w 17.8 \mathrm{~Hz}$) multiplet centred at $\delta 4.08$. The cis-diol 21α-proton appeared as a broad ($w 36 \mathrm{~Hz}$) multiplet centred at $\delta 3.76$ characteristic of an axial proton. Crystallization of this mixture of diols from MeOH afforded the pure cis-diol 21. Treatment of either a mixture of 20 and 21 or pure 21 with $\mathrm{NaN}_{3}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ afforded a $1: 1$ mixture of the trans-azide 22 $\delta 4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$ and the cis-azide $23 \delta 3.72(\mathrm{tt}, 1 \mathrm{H}$, $J 4.9$ and $9.8 \mathrm{~Hz}, \mathrm{CHOH}$). A small amount (12% of product mixture) of the elimination product 27 (alkenic signal, a multiplet at $\delta 6.15$) resulting from elimination of the benzylic hydroxy was also formed. The latter could be generated quantitatively by treatment of 20 and 21 with $1: 1 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-$
CHCl_{3} at $5{ }^{\circ} \mathrm{C}$ (Scheme 2). Treatment of 27 with $\mathrm{NaN}_{3}-$ $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in CHCl_{3} either at $0^{\circ} \mathrm{C}$ or at ambient temperature failed to give detectable amounts of the azides 22 and 23 suggesting that 27 is not an intermediate in the formation of 22 and $\mathbf{2 3}$ from 20 and 21. The azides 22 amd 23 were catalytically reduced to the amino alcohol mixture 24 and 25 , a small portion of which was chromatographically separated to give pure 25 identical with a reference sample prepared by a different method. ${ }^{11}$

In an attempt to define the cis or trans configuration of 25, the carbamate 26 was generated in quantitative yield by reaction of the amine with $\mathrm{EtOCOCl}-\mathrm{NaHCO}_{3}$ (Scheme 3). Treatment of 26 with NaH -dimethylformamide (DMF), KOBu^{t}-tetrahydrofuran (THF) or overnight with boiling xylenes ($137-144{ }^{\circ} \mathrm{C}$) failed to give the corresponding cyclic carbamate. Pyrolysis of 26 at $250-270^{\circ} \mathrm{C}$ for 10 min gave the cyclohexene 27 as the major product. These results suggested either a trans configuration or failure of the cis carbamate 26 to cyclize. The configuration of 25 was, however, unequivocally determined to be cis from single crystal X-ray analysis of $\mathbf{2 5}$ (Fig. 1, see later).

2-BT = 2-benzo[b]thienyl
Scheme 3 i, EtOCOCl, CHCl_{3}, sat. aq. NaHCO_{3}; ii, boiling xylenes, reflux overnight; iii, $\mathrm{NaH}, \mathrm{DMF}, 20^{\circ} \mathrm{C}$ of $\mathrm{Bu}{ }^{\text {o }} \mathrm{OK}, \mathrm{THF}, 20^{\circ} \mathrm{C}$; iv, $250 \rightarrow 270^{\circ} \mathrm{C}$, neat, 10 min

The trans-hydroxy amine 24 exhibited a relatively narrow multiplet ($1 \mathrm{H}, J 3.8 \mathrm{~Hz}, \mathrm{CHOH}$) at $\delta 3.90$ whereas the cishydroxyamine $\mathbf{2 5}$ gave a broader multiplet ($\mathrm{tt}, 1 \mathrm{H}, J 4.6$ and 9.3 $\mathrm{Hz}, \mathrm{CHOH}$) in its ${ }^{1} \mathrm{H}$ NMR spectrum. A mixture of 24 and 25 was treated with 1,5 -dibromopentane- $\mathrm{K}_{2} \mathrm{CO}_{3}$ to give 28 and 29 (Scheme 2) which were readily separated chromatographically. Compound 29 was transformed via the methanesulfonate $\mathbf{3 0}$ to the isothiocyanate 3 . Similar treatment of 28 with $(\mathrm{MeSO})_{2} \mathrm{O}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ resulted only in the unstable internally cyclized product 33 (isolated in CHCl_{3} solution as its hydroxide salt) because of favourable (trans) geometry for internal displacement of $\mathrm{MeSO}_{3}{ }^{-}$by the piperidine nitrogen atom.

Thus, in an alternative approach to the isothiocyanate 4 (Scheme 4), a mixture of 28 and 29 (1:1) was oxidized in high yield with dimethyl sulfoxide (DMSO)-(COCl) $)_{2}-\mathrm{Et}_{3} \mathrm{~N}^{12}$ to give the ketone 34. The sequence of oximation and hydrogenation in acetic acid in the presence of PtO_{2} afforded a $1: 9\left({ }^{1} \mathrm{H}\right.$, NMR comparison) mixture of the desired amine 36 to the undesired trans-amine 32. Adsorption of the piperidine ring nitrogen atom onto the catalyst surface and addition of hydrogen to the oxime $\mathrm{C}=\mathrm{N}$ from the same face affords the trans isomer as the major product under these conditions. No significant reduction was observed under the same conditions when using $10 \% \mathrm{Pd} / \mathrm{C}$ instead of PtO_{2}, most likely a result of poisoning of the less active (than Pt) Pd / C catalyst by the benzothiophene sulfur atom. In contrast, reduction of 35 with an excess of LiAlH_{4} at $0{ }^{\circ} \mathrm{C}$ afforded a $1: 5$ mixture of 32 and $\mathbf{3 6}$ which is comparable to the cis:trans ratio observed with

Fig. 1 The molecular structure and numbering scheme for the fumarate salt of 25 . Thermal ellipsoids are drawn at the 20% probability level. Dotted lines are hydrogen bonds and atoms [(O) 1wa) and $\mathrm{O}(2 \mathrm{wa})], \mathrm{O}(1 \mathrm{sb})$ and $\mathrm{O}(1 \mathrm{sc})$ are symmetry related via $(x, y-1.0, z)$, $(x-0.5,-y-0.5, z)$ and $(x, y+1.0, z)$, respectively. The lower occupancy atoms in the disorder $\left[\left(\mathrm{S}\left(1^{\prime}\right)\right.\right.$ and $\left.\mathrm{C}\left(8^{\prime}\right)\right]$ are not shown.

4

28, 29

36

$34 R=O$

2-BT = 2-benzo[b]thienyl, Pip = piperidino

Scheme $4 \mathrm{i}, \mathrm{DMSO}-(\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 20^{\circ} \mathrm{C}$; ii, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{NaOAc}, \mathrm{EtOH}$; iii, $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; iv, CSCl_{2}, sat. aq. $\mathrm{NaHCO}_{3}, \mathrm{CHCl}_{3}$
NaBH_{4} reduction of ketone 18. In both the case of the oxime 35 and the ketone 18, access of the hydride reducing agent to both faces of the $\mathrm{C}=\mathrm{O} / \mathrm{C}=\mathrm{N}$ is equally likely on steric grounds. However, the greater proportion of cis isomer formed suggests that product development control (in which the dominating factor is formation of a transition state in which the interactions between the complexed ketone oxygen or oxime nitrogen and the rest of the molecule are minimized) is the deciding factor for stereochemical outcome.

Target outcome 4 was obtained on treatment of the amine 36 with $\mathrm{CSCl}_{2} .{ }^{10}$

Aryl isothiocyanate derivatives 5-7 were synthesized (Scheme 5) via nitration of 1 (Scheme 1). Initial attempts to nitrate 1 by treatment with $\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$ gave an inseparable mixture. An improved procedure utilizing NaNO_{2} in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{13}$ afforded mononitro derivatives $37(60 \%), 38(9 \%)$ and $39(20 \%)$. Catalytic hydrogenation of 37 in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ proceeded slowly to give amine 40 in 96% yield which was transformed into 5 . Compounds 6 and 7 were similarly prepared from 38 and 39.

Preliminary data indicates that compounds 5 and 6 are potent (equipotent to BTCP) displacers of $\left[{ }^{3} \mathrm{H}\right]$ BTCP from dopamine reuptake sites in rat striatal membranes whereas 2-4

Scheme 5 i, $\mathrm{NaNO}_{2}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 20^{\circ} \mathrm{C}$; ii, $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, EtOH ; iii, CSCl_{2}, sat. aq. NaHCO_{3} or $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CHCl}_{3}$
and 7 are considerably less efficaceous $\left(\mathrm{IC}_{50}>1000 \mathrm{nmol}\right.$ dm^{-3}) in this effect. ${ }^{14}$ The irreversible binding properties of 2-7 are currently under investigation.

Experimental

Materials.-Melting points were determined on a ThomasHoover capillary apparatus and are uncorrected. Elemental analyses were determined at Atlantic microlabs, Atlanta, Georgia, USA. Chemical ionization mass spectra (CIMS) were obtained using a Finnigan 1015 mass spectrometer. Electron ionization mass spectra (EIMS) and high resolution mass measurements (HRMS) were obtained using a VG-Micromass 7070 F mass spectrometer. IR spectra were taken for CHCl_{3} solutions of compounds using a Bio-Rad FTS-45 FTIR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Varian XL-300 spectrometer; results are recorded as ppm downfield of the $\mathrm{Me}_{4} \mathrm{Si}$ signal; J values are given in Hz . TLC was performed on $250 \mu \mathrm{~m}$ Analtech GHLF silica gel plates. TLC system A corresponds to concentrated aqueous $\mathrm{NH}_{3}-\mathrm{MeOH}-\mathrm{CHCl}_{3}$ (1:9:90); B (0.5:4.5:95); C (0.2:1.8:98). TLC solvent system D refers to ethyl acetate-hexane $(1: 9) ; \mathrm{E}(1: 1)$. Ether refers to diethyl ether. Spectral data (NMR and IR) for all amines is reported for the free base.

1-(2-Benzo[b]thienyl)cyclohexanol 9.-To a solution of benzo $[b]$ thiophene ($30.7 \mathrm{~g}, 229 \mathrm{mmol}$) in ether ($200 \mathrm{~cm}^{3}$) was added during 15 min , with cooling from a water-bath, a solution of butyllithium in hexane $\left(2.5 \mathrm{~mol} \mathrm{dm}{ }^{3} ; 101 \mathrm{~cm}^{3}, 252 \mathrm{mmol}, 1.1\right.$ equiv.). The reaction mixture began to reflux gently during the addition. The solution was stirred for a further 2 h at $20^{\circ} \mathrm{C}$ and then treated dropwise with cyclohexanone $\left(26 \mathrm{~cm}^{3}, 252 \mathrm{mmol}\right.$, 1.1 equiv.). The solution became warm and started to reflux during the addition of the cyclohexanone. Towards the end of the addition, a copious white precipitate of the lithium salt of 9 separated from the solution. When the addition was complete, the reaction mixture was poured into water ($200 \mathrm{~cm}^{3}$) and the aqueous layer was discarded. The organic layer was washed with saturated brine ($100 \mathrm{~cm}^{3}$) and evaporated to give the pure alcohol 9 as a crystalline solid (53.1 g , quantitative). Analytically pure material was obtained by crystallization of 9 from hexanes: m.p. $94-95^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3590,3010,2939,2860,1458$, $1436,1306,1171,1157$ and $966 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.80$ (dd, $J 1.2$ and $8.0,1 \mathrm{H}), 7.70(\mathrm{dd}, J 1.6$ and $7.0,1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H})$, $1.99(\mathrm{~m}, 4 \mathrm{H})$ and $1.58-1.86$ (complex $\mathrm{m}, 6 \mathrm{H}$). CIMS [Found: $233\left(\mathrm{MH}^{+}\right) . \mathrm{MH}^{+}$calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OS}: 233$] (Found: $\mathrm{C}, 72.3: \mathrm{H}$, 7.0. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{OS}$ requires $\mathrm{C}, 72.37 ; \mathrm{H}, 6.94 \%$).

1-(2-Benzo[b]thienyl)cyclohexylamine 11.-To a stirred solution of the alcohol $9(61.9 \mathrm{~g}, 267 \mathrm{mmol})$ in alcohol-free CHCl_{3} $\left(260 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ containing $\mathrm{NaN}_{3}(52.0 \mathrm{~g}, 800 \mathrm{mmol}, 3.0$ equiv.) was added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(82 \mathrm{~cm}^{3}, 1.06 \mathrm{~mol}, 4.0\right.$ equiv.) and the solution was then stirred overnight at $20^{\circ} \mathrm{C}$. The reaction mixture was treated with water $\left(200 \mathrm{~cm}^{3}\right)$ followed by an excess of concentrated aqueous ammonia solution. After thorough
shaking of the mixture in a separatory funnel, the lower CHCl_{3} layer was separated and the aqueous layer was extracted with further $\mathrm{CHCl}_{3}\left(200 \mathrm{~cm}^{3}\right)$. The combined organic layer was washed with water ($200 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated under reduced pressure to give the crude azide 10 in quantitative yield: IR $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2100$ (v strong N_{3} str).

The crude azide was dissolved in dry ether ($400 \mathrm{~cm}^{3}$) and treated dropwise at $20^{\circ} \mathrm{C}$ with $\mathrm{LiAlH}_{4}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3} ; 500 \mathrm{~cm}^{3}\right.$, 500 mmol) in THF at such a rate that a gentle reflux was maintained. The reaction mixture was stirred overnight under a nitrogen atmosphere when TLC (solvent system A) indicated the reaction to be complete. The reaction was quenched by dropwise addition of water ($19 \mathrm{~cm}^{3}$), 15% aqueous $\mathrm{NaOH}(19$ cm^{3}) and finally water ($57 \mathrm{~cm}^{3}$). The precipitated aluminium salts were filtered off and the filter-cake was washed with ether ($200 \mathrm{~cm}^{3}$). The combined filtrate and washings were evaporated to a colourless oil which was dissolved in a solution of citric acid monohydrate (80 g) in water ($500 \mathrm{~cm}^{3}$). Copious crystallization of the citrate salt occurred on addition of the base. The aqueous suspension of citrate salt was washed with ether ($3 \times 500 \mathrm{~cm}^{3}$) and the ether extract was discarded. The aqueous mixture was basified by the addition of an excess of concentrated aqueous ammonia, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 300 \mathrm{~cm}^{3}\right)$ and the latter back-extracted with water $\left(200 \mathrm{~cm}^{3}\right)$ and then evaporated to give the amine 11 as a colourless oil $(40.7 \mathrm{~g}, 66 \%) .11 \cdot \mathrm{HCl}$ (EtOAc); m.p. $236-238^{\circ} \mathrm{C}$ (decomp.); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3375 \mathrm{w}, 3300 \mathrm{w}, 3009,2936,2858,1458,1435,911$ and 829 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.79(\mathrm{~d}, J 7.7,1 \mathrm{H}), 7.69(\mathrm{~d}, J 7.2,1 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.16(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.88$ (complex m, 2 H) and 1.34 1.75 (complex m, 8 H). EIMS [Found: $231\left(\mathrm{M}^{+}\right), 214\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{NH}_{3}\right)$ and $188\left(\mathrm{M}^{+}-\mathrm{NH}_{3}-\mathrm{C}_{2} \mathrm{H}_{6}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NS}$: 231] (Found: C, 62.7; H, 6.8; N, 5.2. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNS}$ requires C , 62.79; H, 6.77; N, 5.23%).

1-[1-(2-Benzo[b]thienyl)cyclohexyl]piperidine $(B T C P)^{3}$ 1.The amine $11(36.27 \mathrm{~g}, 157 \mathrm{mmol})$ in dry DMF ($400 \mathrm{~cm}^{3}$) was treated with 1,5 -dibromopentane ($36.10 \mathrm{~g}, 1.1$ equiv.) and the reaction mixture was stirred and heated at $60^{\circ} \mathrm{C}$ for 48 h . $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($23.9 \mathrm{~g}, 173 \mathrm{mmol}, 1.1$ equiv.) was added and the reaction mixture was heated and stirred at $60^{\circ} \mathrm{C}$ for a further 24 h . TLC (solvent system A) indicated the reaction to be complete. The solution was cooled, quenched with cold water ($1.2 \mathrm{dm}^{3}$) and extracted with ether $\left(3 \times 400 \mathrm{~cm}^{3}\right)$. The combined extracts were back-extracted with water $\left(500 \mathrm{~cm}^{3}\right)$ and then the volume reduced to $500 \mathrm{~cm}^{3}$ at the rotary evaporator. The ethereal solution of crude 1 was partitioned between 10% aqueous citric acid ($1 \mathrm{dm}^{3}$) and ether ($500 \mathrm{~cm}^{3}$) and the organic extract was discarded. The aqueous acidic solution was washed with further ether ($2 \times 500 \mathrm{~cm}^{3}$) and then basified by addition of an excess of aqueous ammonia. The basified solution was extracted with ether ($3 \times 300 \mathrm{~cm}^{3}$) and the combined organic extracts were back-washed with water $\left(500 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to yield BTCP $1(33.2 \mathrm{~g}, 71 \%)$ as a crystalline solid. Further purification was achieved by crystallization of the fumarate salt from MeOH -propan-2-ol; m.p. $187-188.5^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3008,2936,2856,1741,1433$ and $1252 ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 7.79(\mathrm{~d}, J 7.7,1 \mathrm{H}), 7.72(\mathrm{~d}, J 7.2,1 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.61$ (complex m, 8 H) and $1.30(\mathrm{~m}, 2 \mathrm{H})$. EIMS [Found: $299\left(\mathrm{M}^{+}\right)$, $256\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ and $215\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}-\mathrm{H}^{+}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NS}: 299$]. HRMS [Found: $229.1724\left(\mathrm{M}^{+}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NS}: 229.1708$] (Found for 1•fumarate: $\mathrm{C}, 66.35 ; \mathrm{H}$, $7.05 ; \mathrm{N}, 3.35 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 66.48; $\mathrm{H}, 7.03 ; \mathrm{N}, 3.37 \%$). 1 (propan-2-ol): m.p. $82-83^{\circ} \mathrm{C}$. $1 \cdot \mathrm{HCl}$ (EtOAc): m.p. 192$193{ }^{\circ} \mathrm{C}$.

1-[1-(2-Benzo[b]thienyl)cyclohexyl]-4,4-ethylenedioxypiperidine 12.-A mixture of amine 11 (base obtained from 3 g of
$11 \cdot \mathrm{HCl}$ salt by partitioning between aqueous ammonia and CHCl_{3}) (11.2 mmol) and 3,3-ethylenedioxypentane-1,5-diol dimethanesulfonate ester ${ }^{9}$ ($3.43 \mathrm{~g}, 10.8 \mathrm{mmol}$) in dry DMF (30 cm^{3}) was heated and stirred at $60^{\circ} \mathrm{C}$ for 4 d and then treated with further dimethanesulfonate (3.43 g). The reaction was allowed to proceed for a further 2 d after which $\mathrm{K}_{2} \mathrm{CO}_{3}(3.2 \mathrm{~g}$, $22.4 \mathrm{mmol}, 2.0$ equiv.) was added to the reaction mixture. TLC (solvent system A) indicated the reaction to be complete. The acetal ($3.57 \mathrm{~g}, 89 \%$) was isolated as for BTCP above. 12.fumarate crystallized from hot ethanol ($50 \mathrm{~cm}^{3}$), m.p. 177$178{ }^{\circ} \mathrm{C} ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3011,2937,2829,1457,1364,1308$, $1250,1235,1141,1123,1066$ and 1038; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78(\mathrm{~d}, J 7.6$, 1 H), 7.70 (d, J7.5, 1 H), $7.28(\mathrm{~m}, 2 \mathrm{H}$), 7.05 (s, 1 H), $3.86(\mathrm{~s}, 4 \mathrm{H}$), $2.56(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H})$ and 1.46 (m, 4 H). EIMS [Found: $357\left(\mathrm{M}^{+}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$: 357] (Found for 12-fumarate: C, 63.0; H, 6.7; N, 3.1. $\mathrm{C}_{25}{ }^{-}$ $\mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S} \cdot 0.33 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 62.60 ; \mathrm{H}, 6.66 ; \mathrm{N}, 2.92 \%$).

1-[1-(2-Benzo[b]thienyl)cyclohexyl]-4-piperidone 13.-The free base obtained from 12 fumarate ($1.42 \mathrm{~g}, 2.96 \mathrm{mmol}$) was dissoved in $\mathrm{HCl}\left(6 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 100 \mathrm{~cm}^{3}\right)$ and the solution was heated at $60^{\circ} \mathrm{C}$ for 2 h when TLC (solvent system B) indicated complete reaction. The reaction mixture was cooled and poured into 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($500 \mathrm{~cm}^{3}$). The solution was extracted with $\mathrm{CHCl}_{3}\left(3 \times 100 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude piperidone 13 as an oil which gave $13-\mathrm{HCl}$ (propan $-2-\mathrm{ol}$) ($0.68 \mathrm{~g}, 66 \%$); m.p. $189-190^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3005,2940,2858,2817,1711,1602,1119$ and $1068 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78(\mathrm{dd}, J 1.2$ and $7.9,1 \mathrm{H}), 7.72(\mathrm{dd}, J 1.6$ and $6.8,1 \mathrm{H}$), 7.30 (m, 2 H), 7.09 (s, 1 H), $2.80(\mathrm{t}, J 5.7,4 \mathrm{H}), 2.41(\mathrm{t}, J$ $5.7,4 \mathrm{H}), 2.14(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H})$ and 1.46-1.60 (complex m, 4 H); EIMS [Found: $313\left(\mathrm{M}^{+}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{23}$ NOS: 313] (Found for $13 . \mathrm{HCl}$: C, $65.0 ; \mathrm{H}, 6.95 ; \mathrm{N}, 3.95 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{ClNOS}$ requires $\mathrm{C}, 65.22 ; \mathrm{H}, 6.91 ; \mathrm{N}, 4.00 \%$).

1-[1-(2-Benzo [b]thienyl) cyclohexyl]-4-piperidone Oxime 14.-A mixture of piperidone $13 \cdot \mathrm{HCl}(0.58 \mathrm{~g}, 1.66 \mathrm{mmol})$, $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.58 \mathrm{~g}, 4.26 \mathrm{mmol}, 2.57$ equiv. $)$ and $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}$ ($0.14 \mathrm{~g}, 2.01 \mathrm{mmol}, 1.2$ equiv.) in ethanol ($22 \mathrm{~cm}^{3}$) was stirred for 3 h at $20^{\circ} \mathrm{C}$ when TLC (solvent system B) indicated complete reaction. The solvent was evaporated in vacuo and the residue was partitioned between 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(100 \mathrm{~cm}^{3}\right)$ and $\mathrm{CHCl}_{3}\left(100 \mathrm{~cm}^{3}\right)$. The CHCl_{3} extract was back-washed with water $\left(50 \mathrm{~cm}^{3}\right)$ and then evaporated to give the oxime $14(0.54 \mathrm{~g}$, quantitative) as a colourless foam. $14 \cdot \mathrm{HCl}$ (propan- 2 -olEtOAc); m.p. $175-177{ }^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3592$, 3009, 2939, 2857, 2818, 1457, 1434, 1329, 1250, 1124, 994, 962 and $905 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.77(\mathrm{~d}, J 7.4,1 \mathrm{H}), 7.71(\mathrm{dd}, J 1.2$ and $7.7,1$ H), $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.50-2.68$ (complex m, 6 H), $2.30(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.58$ $(\mathrm{m}, 2 \mathrm{H})$ and $1.48(\mathrm{~m}, 4 \mathrm{H})$. CIMS [Found: $329\left(\mathrm{MH}^{+}\right)$and 311 ($\mathrm{MH}^{+}-18$). MH^{+}calc. for $\left.\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}: 329\right]$ (Found for 14. $\mathrm{HCl}: \mathrm{C}, 61.2 ; \mathrm{H}, 7.0 ; \mathrm{N}, 7.5 . \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{OS} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires C, 61.02; H, 7.01; N, 7.49\%).

4-Amino-1-[1-(2-benzo[b]thienyl)cyclohexyl]-piperidine 15.The oxime 14 (base) ($0.54 \mathrm{~g}, 1.65 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of LiAlH_{4} in THF (1.0 $\mathrm{mol} \mathrm{dm}{ }^{3} ; 10 \mathrm{~cm}^{3}, 10 \mathrm{mmol}$) and the reaction mixture was stirred for 24 hat room temp.; TLC (solvent system A) indicated a trace of unchanged 14 remaining after this time. The product was isolated by standard methods to give the amine 15 as a crystalline solid (0.52 g , quantitative). 15 (propan-2-ol); m.p. 92$93{ }^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3375 \mathrm{w}, 2937,2856,2809,1576,1259$, 1074 and $870 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78(\mathrm{~d}, J 7.6,1 \mathrm{H}), 7.72(\mathrm{dd}, J 1.3$ and $7.9,1 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H})$, $2.06(\mathrm{~m}, 4 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 4 \mathrm{H})$ and $1.24-1.54$
(complex m, 8 H). CIMS [Found: $315\left(\mathrm{MH}^{+}\right.$) and 215 $\left(\mathrm{MH}^{+}-\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$. MH^{+}calc. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}$: 315] (Found: C, 72.6; H, 8.4; N, 8.96. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 72.57$; H, 8.33; N, 8.91%).

1-[1-(2-Benzo $[\mathrm{b}]$ thienyl)cyclohexyl $]-4$-isothiocyanatopiperidine 2.-To a rapidly stirred solution of the amine $\mathbf{1 5}(0.20$ $\mathrm{g}, 0.637 \mathrm{mmol}$) in a mixture of saturated aqueous $\mathrm{NaHCO}_{3}(10$ cm^{3}) and $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added freshly redistilled CSCl_{2} ($58.3 \mathrm{~mm}^{3}, 0.71 \mathrm{mmol}, 1.1$ equiv.) in $\mathrm{CHCl}_{3}\left(1.0 \mathrm{~cm}^{3}\right.$). TLC (solvent system B) indicated complete reaction after 10 min at $20^{\circ} \mathrm{C}$. The organic layer was separated, diluted to $50 \mathrm{~cm}^{3}$ with CHCl_{3}, washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$ and evaporated to give the product 2 as a yellow oil (0.23 g , quantitative). $2 \cdot \mathrm{HCl}(0.202 \mathrm{~g}, 81 \%)$ (EtOAc), m.p. $170-171{ }^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3008,2938,2857,2813$, 2095 br vs (NCS str), 1456, 1364, 1254, 1128, 1075 and 964; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78(\mathrm{~d}, J 7.5,1 \mathrm{H}), 7.72(\mathrm{~d}, J 7.1,1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.05(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.24$ (complex m, 8 H), 1.64-1.86 (complex m, 4 H) and 1.47 (m, 4 H). CIMS [Found: $357\left(\mathrm{MH}^{+}\right)$and $215\left(\mathrm{MH}^{+}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}\right) . \mathrm{MH}^{+}$ calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}$:357] (Found: C, 60.4; H, 6.5; $\mathrm{N}, 7.0$. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{~S}_{2} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires C, $60.42 ; \mathrm{H}, 6.47 ; \mathrm{N}, 7.04 \%$).

4-(2-Benzo[b]thienyl)-4-hydroxycyclohexanone 18.-A stirred solution of the ketal 17 (for preparation, see ref. 11) (87.2 $\mathrm{g}, 301 \mathrm{mmol}$) in a mixture of acetic acid ($800 \mathrm{~cm}^{3}$) and water ($200 \mathrm{~cm}^{3}$) was heated for 2 h at $55^{\circ} \mathrm{C}$ or until TLC (solvent system E) indicated the reaction to be complete. The reaction mixture was diluted to $2000 \mathrm{~cm}^{3}$ with water and extracted with ether ($2 \times 700 \mathrm{~cm}^{3}$). The combined organic extracts were washed with an excess of aqueous ammonia ($500 \mathrm{~cm}^{3}$) and water $\left(500 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give 18 (quantitative) as a crystalline solid. Recrystallization from propan-2-ol gave ketone $18\left(55.1 \mathrm{~g}, 74 \%\right.$), m.p. $150-151^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3587$ (non H-bonded OH str), 3063, 3012, $2936,2860,1711 \mathrm{vs}, 1459,1332,1231$ and $948 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.82$ (d, J6.9, 1 H), $7.73(\mathrm{~d}, J 6.8,1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 2.91$ (m, 2 H) and 2.42 (m, 6 H). CIMS [Found: $247\left(\mathrm{MH}^{+}\right) . \mathrm{MH}^{+}$ calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}: 247$] (Found: $\mathrm{C}, 68.2 ; \mathrm{H}, 5.75 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.27 ; \mathrm{H}, 5.73 \%$).

4-Amino-4-(2-benzo[b]thienyl)cyclohexanone 19.-To a stirred mixture of the ketone $18(7.00 \mathrm{~g}, 28.4 \mathrm{mmol})$ in hydrocarbon-stabilized $\mathrm{CHCl}_{3}\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added NaN_{3} ($3.70 \mathrm{~g}, 56.9 \mathrm{mmol}, 2.0$ equiv.) followed by $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($9.73 \mathrm{~cm}^{3}, 126 \mathrm{mmol}, 4.4$ equiv.). After being stirred overnight at $20^{\circ} \mathrm{C}$, the reaction mixture was diluted to $500 \mathrm{~cm}^{3}$ with CHCl_{3}, washed with $10 \% \mathrm{NaOH}\left(200 \mathrm{~cm}^{3}\right)$ and water ($200 \mathrm{~cm}^{3}$), and evaporated to leave a semicrystalline mass; IR $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2120\left(\mathrm{~N}_{3} \mathrm{str}\right), 1720(\mathrm{C}=\mathrm{O}$ str) and 1230. No attempt was made to further purify or characterize this crude azide [4-azido-4-(2benzo[b]thienyl)cyclohexanone]. The entire azide product was taken up in 95% ethanol ($150 \mathrm{~cm}^{3}$) and the solution was acidified by addition of concentrated $\mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$. The reaction mixture was hydrogenated at $50 \mathrm{psi}{ }^{*}$ for a total of 2.5 h when TLC analysis (solvent system A) indicated completion. The catalyst was removed by filtration through Celite and the filtrate was evaporated. The residue was dissolved in water ($200 \mathrm{~cm}^{3}$) and extracted with ether $\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The aqueous layer was basified by addition of concentrated aqueous ammonia, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 200 \mathrm{~cm}^{3}\right)$, the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give crystalline amine 19 ($5.2 \mathrm{~g}, 75 \%$ overall yield). $19 \cdot \mathrm{HCl}$ (EtOAc), m.p. 219-220 ${ }^{\circ} \mathrm{C}$ (decomp.); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3392\left(\mathrm{NH}_{2} \mathrm{str}\right)$,

[^0]3323 (NH_{2} str), 3019, 2938, 2864, 1709, 1458, 1436, 1225, 1157 and $1130 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.81(\mathrm{dd}, J 1.4$ and $8,1 \mathrm{H}), 7.71(\mathrm{dd}, J 1.7$ and $6.8,1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.48$ (complex m, 4 H), 2.18-2.31 (complex m, 2 H) and 1.69 (br s, 2 H). CIMS [Found: $246\left(\mathrm{MH}^{+}\right) . \mathrm{MH}^{+}$calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NOS}$: 246] (Found: for $19 . \mathrm{HCl}$ C, $58.15 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.75$. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNOS} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 57.81 ; \mathrm{H}, 5.89 ; \mathrm{N}, 4.82 \%$).
trans- and cis-1-(2-Benzo[b]thienyl)cyclohexane-1,4-diols 20 and 21.-To a stirred suspension of the ketone $18(28.0 \mathrm{~g}, 114$ mmol) in anhydrous $\mathrm{MeOH}\left(500 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added, rapidly, a freshly prepared solution of $\mathrm{NaBH}_{4}(8.61 \mathrm{~g}, 228$ mmol) in $\mathrm{MeOH}\left(250 \mathrm{~cm}^{3}\right)$. Examination of the reaction mixture by TLC (solvent system E) after 5 min indicated complete reaction. Acetone ($50 \mathrm{~cm}^{3}$) was added to destroy unchanged hydride and the solvent was evaporated under reduced pressure at $<40^{\circ} \mathrm{C}$. The residue was taken up in water ($300 \mathrm{~cm}^{3}$) and most of the inorganic salts were dissolved by addition of acetic acid $\left(50 \mathrm{~cm}^{3}\right)$ (to pH 5). The aqueous mixture was extracted with $\mathrm{CHCl}_{3}\left(3 \times 300 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water ($300 \mathrm{~cm}^{3}$), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated under reduced pressure to afford the product (6.5 g). The aqueous mixture was filtered and the filtercake was washed well with 10% aqueous acetic acid ($500 \mathrm{~cm}^{3}$), to remove any inorganic salts, and water ($100 \mathrm{~cm}^{3}$), and pressed dry and dried overnight in vacuo (yield 21.2 g) (combined yield of mixed alcohols $27.7 \mathrm{~g}, 98 \%$). The mixed diols appeared as a single spot on TLC (solvent system A), ${ }^{1} \mathrm{H}$ NMR analysis of the mixed diols 20 and 21 indicated a $1: 4$ mixture of the trans-diol $20\left[\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.08(\mathrm{~m}, J 2.6,1 \mathrm{H}, \mathrm{CHOH})\right]$ to cis-diol $21\left[\delta_{\mathrm{H}}\right.$ $\left(\mathrm{CDCl}_{3}\right) 3.76$ (tt, $J 4.9$ and $\left.\left.9.9,1 \mathrm{H}, \mathrm{CHOH}\right)\right]$. Recrystallization of this mixture from hot $\mathrm{MeOH}\left(300 \mathrm{~cm}^{3}\right)$ afforded the pure cisdiol 21 (20.6 g), m.p. 201.5-202 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3591(\mathrm{OH}$ str), 3605 (OH str), 3008, 2943, 2864, 1602, 1458, 1436, 1306, 1053 and $957 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.80(\mathrm{dd}, J 7.8$ and $1.1,1 \mathrm{H}), 7.71(\mathrm{dd}, J$ 8.2 and $1.6,1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{tt}, J 4.9$ and 9.9 1 H , axial H, CHOH), 2.08-2.19 (complex m, 2 H), 2.02 (m, 2 H), 1.77-1.98 (complex m, 4 H) and 1.54 (br s, 2 H). EIMS [Found: $248\left(\mathrm{M}^{+}\right), 230\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ and $210\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}-\right.$ H_{2}). M^{+}calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$: 248] (Found: C, 67.6; H, 6.5 . $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires C, $67.71 ; \mathrm{H}, 6.49 \%$). Evaporation of the mother liquor and recrystallization of the residue from propan-$2-\mathrm{ol}\left(100 \mathrm{~cm}^{3}\right)$ furnished a mixture of 20 and $21(5.9 \mathrm{~g})$.
trans- and cis-4-Azido-4-(2-benzo[b] thienyl)cyclohexanols 22 and 23.-To a stirred suspension of the cis-diol $21(19.5 \mathrm{~g}, 78.6$ mmol) and NaN_{3} ($15.34 \mathrm{~g}, 236 \mathrm{mmol}, 3.0$ equiv.) at $0^{\circ} \mathrm{C}$ in hydrocarbon-stabilized $\mathrm{CHCl}_{3}\left(300 \mathrm{~cm}^{3}\right)$ was added, dropwise, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(24.23 \mathrm{~cm}^{3}, 315 \mathrm{mmol}, 4.0\right.$ equiv.). The mixture was stirred at room temperature overnight and was then treated as for the synthesis of the azide 10 to give the crude azides (21.5 g , quantitative) as a crystalline solid. ${ }^{1} \mathrm{H}$ NMR analysis of the mixture indicated the presence of a $1: 1$ mixture of the transazide $22\left[\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})\right]$ and cis-azide 23 $\left[\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.72(\mathrm{tt}, 1 \mathrm{H}, J 4.9\right.$ and $\left.9.8, \mathrm{CHOH})\right]$. A small amount of alkenic product 27 (12% of product mixture) $\left[\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 6.15(\mathrm{dd}, J 1.5\right.$ and $3.5,1 \mathrm{H}$, alkenic-H) $]$ was also formed; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ (mixture of 22 and 23) $3611(\mathrm{OH}$ str), 2939, 2102vs (N_{3} str). No attempt was made to purify further this mixture of azides; instead it was subjected immediately to catalytic hydrogenation as described below.

For purposes of assignment of configuration, however, a sample of the pure cis-azide 23 (0.42 g) was obtained by crystallization of 2.0 g of the above mixture from propan-2-ol ($20 \mathrm{~cm}^{3}$), m.p. $167-168^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3609(\mathrm{OH} \operatorname{str})$, 3010, 2942, 2865, 2103vs (N_{3} str), 1458, 1436, 1249, 1157 and $1054 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.82(\mathrm{dd}, J 6.2$ and $3.3,1 \mathrm{H}), 7.75$ (dd, $J 7.1$ and $2.5,1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{tt}, 1 \mathrm{H}, J 4.9$ and
9.8, CHOH), 2.24-2.36 (complex m, 2 H), 1.90-2.07 (complex m, 4 H), 1.70-1.86 (complex m, 2 H) and 1.54 (br s, $1 \mathrm{H}, \mathrm{OH}$). EIMS [Found: $273\left(\mathbf{M}^{+}\right)$and $2.45\left(\mathbf{M}^{+}-\mathbf{N}_{2}\right) . \mathbf{M}^{+}$calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}: 273$] (Found: C, 61.7; H, 5.55; N, 15.3. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$ requires C, $61.52 ; \mathrm{H}, 5.53 ; \mathrm{N}, 15.37 \%$). Catalytic hydrogenation of 23 in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ gave the amino alcohol 25 identical (by ${ }^{1} \mathrm{H}$ NMR) with an authentic sample of 25 of defined configuration; this established the configuration of 23 as cis.

4-(2-Benzo[b]thienyl)cyclohex-3-enol 27.-To a stirred suspension of a $1: 1$ mixture of the alcohols 20 and $21(2.00 \mathrm{~g}, 8.06$ $\mathrm{mmol})$ in hydrocarbon-stabilized $\mathrm{CHCl}_{3}\left(20 \mathrm{~cm}^{3}\right)$ at $5{ }^{\circ} \mathrm{C}$ was added dropwise $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(20 \mathrm{~cm}^{3}\right)$ at such a rate that the solution remained pale yellow and the temperature remained at $5^{\circ} \mathrm{C}$. The reaction mixture was stirred for a further 5 min at $5^{\circ} \mathrm{C}$ after which TLC (solvent system E) indicated the reaction to be complete. The reaction mixture was poured into a mixture of 15% aqueous $\mathrm{NaOH}\left(150 \mathrm{~cm}^{3}\right)$ and crushed ice (150 g) and shaken. The lower CHCl_{3} layer was separated and the aqueous layer was washed with $\mathrm{CHCl}_{3}\left(150 \mathrm{~cm}^{3}\right)$. The combined CHCl_{3} extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give 27 (1.85 g , quantitative) as a pale yellow crystalline solid. 27 (pale yellow laminate from propan-2-ol), m.p. $163-163.5^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610,2929,2845,1650$, $1603,1559,1457,1435$ and 1066; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.73$ (dd, $J 2.2$ and $6.5,1 \mathrm{H}), 7.67$ (dd, $J 2.4$ and $6.3,1 \mathrm{H}$), $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, 6.17 (m, 1 H , alkenic $\mathrm{C} H$), 4.08 (m, $1 \mathrm{H}, \mathrm{CHOH}), 2.66-2.79(\mathrm{~m}, 1$ H), 2.52-2.67 (complex m, 2 H), 2.19-2.32 (m, 1 H), 2.04 (m, 1 H) and $1.85(\mathrm{~m}, 1 \mathrm{H})$ (Found: C, 72.5; H, 6.2. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{OS} \cdot 125 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.30 ; \mathrm{H}, 6.18 \%$).
trans- and cis-4-Amino-4-(2-benzo[b]thienyl)cyclohexanols 24 and 25.-A mixture of azides 22 and $23(1: 1)(10 \mathrm{~g}, 36.6 \mathrm{mmol})$ in $\mathrm{MeOH}\left(500 \mathrm{~cm}^{3}\right)$ was catalytically reduced (1.00 g of 10% $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, at 1 atm) to a mixture of amines 24 and 25 as described below for 32. Analysis of the mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated the presence of a $1: 1$ mixture of amino alcohols: trans-amino alcohol 24 exhibited a signal at $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.90(\mathrm{~m}, 1 \mathrm{H}, J 3.8, \mathrm{CHOH})$ whereas the cis-amino alcohol 25 exhibited $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.76(\mathrm{tt}, 1 \mathrm{H}, J 4.6$ and 9.3 , CHOH) identical with that prepared previously. ${ }^{11}$ No attempt was made to separate this mixture.
trans- and cis-4-(2-Benzo[b]thienyl)-4-piperidinylcyclohexanols 28 and 29.-A mixture of amines 24 and 25 (1:1) (3.0 g , 12.1 mmol) was treated with 1,5 -dibromopentane as described for BTCP to give the product mixture as a crystalline solid (quantitative). The mixture was separated by column chromatography on silica gel, eluting with EtOAc. The earlier fractions afforded $29\left(1.1 \mathrm{~g}, 57 \%\right.$), m.p. (propan-2-ol) $154-155^{\circ} \mathrm{C}$ (lit., ${ }^{11}$ $\left.154-155{ }^{\circ} \mathrm{C}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78(\mathrm{~d}, J 7.6,1 \mathrm{H}), 7.72(\mathrm{~d}, J 7.3,1 \mathrm{H})$, $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 2.43(\mathrm{~m}, 4 \mathrm{H})$, 1.71-1.93 (complex m, 4 H), $1.56(\mathrm{~m}, 4 \mathrm{H})$ and $1.31(\mathrm{~m}, 2 \mathrm{H})$ identical to that described previously. ${ }^{11}$ The later fractions afforded 28 ($1.1 \mathrm{~g}, 57 \%$), m.p. (propan-2-ol) $188-189{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610,2936,2859,2808,1457,1433,1245$, 1156,1057 and $985 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.79(\mathrm{~d}, J 7.4,1 \mathrm{H}), 7.73(\mathrm{dd}, J 1.7$ and $7.9,1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$, 2.31-2.51 (complex m, 6 H), 1.87-2.06 (complex m, 4 H), 1.401.65 (complex m, 6 H) and 1.24-1.35 (complex m, 2 H); CIMS [Found: $316\left(\mathrm{MH}^{+}\right)$. MH^{+}calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NOS}: 316$] (Found: C, 72.1; H, 8.0, N, 4.46. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NOS}$ requires C, 72.34; H, 7.99; N, 4.44%).
trans-1-[4-Azido-1-(2-benzo[b]thienyl)cyclohexyl] piperidine 31.-A stirred mixture of compound $\mathbf{3 0}$ (prepared as previously described $\left.{ }^{11}\right)(0.60 \mathrm{~g}, 1.66 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(1.08 \mathrm{~g}, 16.6 \mathrm{mmol}$,

10 equiv.) was heated at $85^{\circ} \mathrm{C}$ overnight under an N_{2} atmosphere. TLC (solvent system C) indicated reaction to be complete. The reaction mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$ and extracted with ether $(2 \times 100$ cm^{3}). The combined extract were back-washed with water (50 cm^{3}), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to give $31(0.52 \mathrm{~g}, 93 \%)$. The crystalline azide $31(0.42 \mathrm{~g})$ was obtained from MeOH, m.p. $78-80{ }^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2920,2840,2800,2100 \mathrm{~s}, 1455,1260$, $1125,980,960$ and $740 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.79(\mathrm{~d}, J 7.6,1 \mathrm{H}), 7.73(\mathrm{~d}$, $J 7.2,1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~m}$, $2 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~m}, 6 \mathrm{H})$ and $1.30(\mathrm{~m}, 2 \mathrm{H})$. CIMS [Found: $341\left(\mathrm{MH}^{+}\right) . \mathrm{MH}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{~S}: 341$] (Found: $\mathrm{C}, 66.95 ; \mathrm{H}, 7.1 ; \mathrm{N}, 16.4 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{~S}$ requires $\mathrm{C}, 67.02 ; \mathrm{H}, 7.10$; $\mathrm{N}, 16.45 \%$).
trans-1-[4-Amino-1-(2-benzo[b]thienyl)cyclohexyl]piperidine 32.-The azide $31(0.30 \mathrm{~g}, 0.88 \mathrm{mmol})$ in $\mathrm{MeOH}(20$ cm^{3}) was treated with an excess of concentrated HCl (to pH 3), and then $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$ was added. The reaction mixture was stirred at atmospheric pressure under an H_{2} atmosphere for 2 h and was then filtered through Celite. The filter-cake was washed with a little $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$. Evaporation of the filtrate under reduced pressure afforded the amine dihydrochloride $\mathbf{3 2} \cdot \mathrm{HCl}$ as a glassy residue $(0.37 \mathrm{~g}$, quantitative). Crystalline 32. HCl (EtOAc), m.p. $190-193{ }^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3700 \mathrm{w}$, 3600w, 2935, 2858, 2810, 1601, 1581, 1469, 1432, 1250, 1156, 1102,1072 and $897 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.79(\mathrm{~d}, J 7.8,1 \mathrm{H}), 7.73(\mathrm{dd}, J$ 1.3 and $7.9,1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.47$ $(\mathrm{m}, 6 \mathrm{H}), 1.84(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H})$ and $1.29(\mathrm{~m}$, $4 \mathrm{H})$. CIMS [Found: $315\left(\mathrm{MH}^{+}\right) . \mathrm{MH}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}$: 315] (Found for 32. HCl : $\mathrm{C}, 55.7 ; \mathrm{H}, 7.6: \mathrm{N}, 6.7 . \mathrm{C}_{19} \mathrm{H}_{28}{ }^{-}$ $\mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}$ requires C, $55.66 ; \mathrm{H}, 7.50 ; \mathrm{N}, 6.83 \%$).
trans-1-[1-(2-Benzo[b]thienyl)-4-isothiocyanatocyclohexyl]piperidine 3.-As described for the synthesis of 2 earlier starting with $32 \cdot \mathrm{HCl}(0.20 \mathrm{~g}, 0.517 \mathrm{mmol})$ gave the isocyanate $3(182 \mathrm{mg}$, quantitative); 3. $\mathrm{HCl}\left(\mathrm{EtOAc}\right.$), m.p. $155^{\circ} \mathrm{C}$ (decomp.); $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2936, 2809, 2116br vs (NCS str), 1433, 1364, $1322,1156,1130$ and $955 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.81(\mathrm{~d}, J 7.7,1 \mathrm{H}), 7.75$ $(\mathrm{d}, J 7.2,1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}$, $4 \mathrm{H}), 2.18(\mathrm{~m}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.60$ (complex m, 4 H) and $1.30(\mathrm{~m}, 2 \mathrm{H})$. CIMS [Found: $357\left(\mathrm{MH}^{+}\right) . \mathrm{MH}^{+}$calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}$: 357] (Found for 3. HCl : C, $59.4 ; \mathrm{H}, 6.7$; N, 6.5. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 59.75 ; \mathrm{H}, 6.52 ; \mathrm{N}, 6.96 \%$).

1-(2-Benzo[b]thienyl)-spiro(7-azabicyclo[2.2.1]heptane-7,1'-piperidin-1'-ium) Hydroxide 33 .-To a stirred solution of transamino alcohol $28(26.2 \mathrm{mg}, 0.083 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}\left(1 \mathrm{~cm}^{3}\right)$ at room temp. was added a solution of methanesulfonic anhydride $(21.7 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(1 \mathrm{~cm}^{3}\right)$. Stirring was continued at room temp. No observable reaction was evident under these conditions even after 20 min (TLC, solvent system A). After this time, $E t_{3} \mathrm{~N}\left(0.1 \mathrm{~cm}^{3}\right)$ was added in one portion. The reaction mixture was stirred at room temp. for 10 min when TLC (solvent system A) indicated complete conversion of the starting material into a polar (TLC, solvent system A, heavily iodine absorbing spot) product. The solvent was evaporated under reduced pressure and traces of $\mathrm{Et}_{3} \mathrm{~N}$ were removed by addition of and subsequent evaporation of $\mathrm{CHCl}_{3}\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The residue proved to be mixture of $\mathbf{3 3}$ methanesulfonate and $\mathrm{Et}_{3} \mathrm{NH}+$ methanesulfonate (${ }^{1} \mathrm{H} \mathrm{NMR}$). In order to separate this mixture of salts, the residue was dissolved in $\mathrm{CHCl}_{3}\left(1 \mathrm{~cm}^{3}\right)$ and extracted with 15% aqueous $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$. The CHCl_{3} layer was separated and evaporated under reduced pressure to give 33 -hydroxide (free from $\mathrm{Et}_{3} \mathrm{~N}$) as an unstable white solid (26 mg , quantitative); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.97(\mathrm{~d}, J$ $5.9,1 \mathrm{H}, \mathrm{ArH}$), 7.85 (d, J 5.9, $1 \mathrm{H}, \mathrm{ArH}$), 7.45 (m, $2 \mathrm{H}, \mathrm{ArH}$), 4.77 (t, J0 and 4.6, $1 \mathrm{H}, \mathrm{N}^{+} \mathrm{CH}$), $3.87\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}^{+}\left(\mathrm{CH}_{2}\right)_{2}\right], 2.97-3.13$
(m, 2 H), 2.71-2.86 (m, 2 H), 2.52-2.68 (m, 2 H), 2.34-2.51 (m, 2 H), 1.84-1.22 (complex $\mathrm{m}, 6 \mathrm{H}$) and $1.18-1.44(\mathrm{~m}, 2 \mathrm{H})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 140.2,139.5,131.4,130.3,126.5,125.4,122.1,82.7$, 65.5, 51.7, 39.5, 33.7, 26.6, 22.3 and 21.9. CIMS [Found: 298 (M^{+}, base peak). Calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NS}{ }^{+}$): 298]. No attempt was made to further purify this material because of its instability.

1-(2-Benzo[b]thienyl)-N-ethoxycarbonyl-4-hydroxycyclohexylamine 26.-To a stirred suspension of amine 25 -fumarate $(0.30 \mathrm{~g}, 0.83 \mathrm{mmol})$ (for synthesis of this compound see ref. 11 or Scheme 2) in a mixture of saturated aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added ethyl chloroformate $\left(189 \mathrm{~mm}^{3}\right.$, $1.98 \mathrm{mmol}, 2.4$ equiv.). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ overnight when TLC (EtOAc) indicated complete reaction. The CHCl_{3} layer was separated and washed with 10% aqueous citric acid ($10 \mathrm{~cm}^{3}$), 10% aqueous $\mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right)$ and water ($10 \mathrm{~cm}^{3}$) and evaporated to give the carbamate 26 as an oil (0.26 g , quantitative) which crystallized with time (EtOAc-hexanes), m.p. $88-91{ }^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610$ (carbamate NH), 3438 $(\mathrm{OH}), 3009,2941,2865,1727 \mathrm{~s}, 1501 \mathrm{~s}, 1436,1255,1234,1094$ and $1052 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.75(\mathrm{dd}, J 1.2$ and $8.0,1 \mathrm{H}), 7.68(\mathrm{dd}, J 1.6$ and $6.8,1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.05(\mathrm{q}$, $J 7.1,2 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 1.86-2.01$ (complex m, 5 H) and 1.56-1.72 (complex m, 4 H). EIMS [Found: $319\left(\mathrm{M}^{+}\right)$, $273\left(M^{+}-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$: 319] (Found: C , 63.8; $\mathrm{H}, 6.7 ; \mathrm{N}, 4.4 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 63.92 ; \mathrm{H}, 6.63$; N , 4.39%).

Attempted Cyclization of cis-1-(2-Benzo[b]thienyl)-N-ethoxycarbonyl-4-hydroxycyclohexylamine 26.-Attempts to cyclize 26 (Scheme 3) by treatment with NaH in DMF or $\mathrm{Bu}^{t} \mathrm{OK}$ in THF were unsuccessful, preventing assignment of configuration based on this approach.

Heating of $26(5 \mathrm{mg})$ for 24 h in boiling xylenes (b.p. 137$144{ }^{\circ} \mathrm{C}$) under an argon atmosphere resulted only in unchanged starting material (${ }^{1} \mathrm{H}$ NMR).
Pyrrolysis of $26(27 \mathrm{mg})$ at $250 \rightarrow 270^{\circ} \mathrm{C}$ during 10 min in a melting point tube followed by TLC (solvent system E) separation of the major product gave $27(10.1 \mathrm{mg}, 52 \%)$ as a pale yellow crystalline solid together with unchanged starting material (8 mg). This compound exhibited spectral data identical with those of 27 prepared by a different method (Scheme 2); $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.74(\mathrm{dd}, J 2.2$ and $6.3,1 \mathrm{H}), 7.67$ (dd, J 2.3 and $6.3,1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J 1.5$ and $3.5,1 \mathrm{H}$, alkenic-H), $4.08(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.81$ (cornplex $\mathrm{m}, 3 \mathrm{H}$), $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H})$ and $1.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. HRMS [Found: $230.0758\left(\mathrm{M}^{+}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{OS}$: 230.0765].

4-(2-Benzo[b]thienyl)-4-piperidinocyclohe xanone 34.-To a stirred solution of oxalyl chloride $\left(2.1 \mathrm{~cm}^{3}, 24.4 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot\left(20 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added very slowly, dry dimethyl sulfoxide ($3.5 \mathrm{~cm}^{3}, 36.7 \mathrm{mmol}, 2.1$ equiv.). The solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , and then a solution of alcohols 28 and $29(1: 1)(5.5 \mathrm{~g}, 17.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~cm}^{3}\right)$ was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min after which $\mathrm{Et}_{3} \mathrm{~N}\left(14.9 \mathrm{~cm}^{3}, 107 \mathrm{mmol}, 6.1\right.$ equiv.) was added dropwise over 1 min . The reaction mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$ and then warmed to $20^{\circ} \mathrm{C}$ with a water-bath. Analysis of the reaction mixture by TLC (solvent system E) indicated the disappearance of 28 and 29 and the formation of a major less polar product. The reaction mixture was poured into water ($200 \mathrm{~cm}^{3}$), extracted with ether ($200 \mathrm{~cm}^{3}$), and the aqueous layer was discarded. The ethereal layer was washed with water $\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the ketone $34(5.2 \mathrm{~g}, 82 \%)$ as a crystalline solid. 34 (propan-2-ol) m.p. $160-162^{\circ} \mathrm{C}$; $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2974,2936,2850,2811,1707$ (CO str), 1458, 1125
and $960 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.80(\mathrm{dd}, J 1.5$ and $7.8,1 \mathrm{H}), 7.75(\mathrm{dd}, J 1.8$ and $8.0,1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{~m}$, $4 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.24$ (complex m, 2 H), 1.58 (complex $\mathrm{m}, 4 \mathrm{H}$) and 1.35 (complex m, 2 H). CIMS [Found: $314\left(\mathrm{MH}^{+}\right) . \mathrm{MH}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NOS}: 314$] (Found: $\mathrm{C}, 72.0 ; \mathrm{H}, 7.4 ; \mathrm{N}, 4.5 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NOS} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.77$; H, 7.45; N, 4.41%).

4-(2-Benzo[b]thienyl)-4-piperidinocyclohexanone Oxime 35. -Ketone 34 ($2.2 \mathrm{~g}, 7.03 \mathrm{mmol}$) was converted into oxime 35 (2.3 g , quantitative) as described earlier for the oxime 14. Crystalline oxime 35 (EtOAc-hexanes), m.p. $163-165^{\circ} \mathrm{C}$; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3696$ (oxime OH str), 3591 (oxime OH str), 2935, $1602,1457,1433,1225,1124,958$ and $902 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.79$ (dd, $J 1.2$ and $7.9,1 \mathrm{H}), 7.73(\mathrm{dd}, J 1.7$ and $7.9,1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 2.84-2.95$ (complex m, 2 H), 2.42-2.65 (complex m, 6 H), 2.22-2.33 (complex m, 2 H), 1.89-2.05 (complex m, 4 H) and 1.24-1.38 (complex m, 4 H). CIMS [Found: $329\left(\mathrm{MH}^{+}\right.$). MH^{+}calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}: 329$] (Found: $\mathrm{C}, 67.6 ; \mathrm{H}, 7.5 ; \mathrm{N}$, 8.3. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.62 ; \mathrm{H}, 7.47 ; \mathrm{N}, 8.30 \%$).
cis-1-[4-Amino-1-(2-benzo[b]thienyl)cyclohexyl] piperidine 36.-To a rapidly stirred solution of LiAlH_{4} in THF $(1.0 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 79 \mathrm{~cm}^{3}, 79 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was added, dropwise, a solution of oxime $35(2.6 \mathrm{~g}, 7.9 \mathrm{mmol})$ in THF ($79 \mathrm{~cm}^{3}$). The solution was stirred from 0 to $>20^{\circ} \mathrm{C}$ overnight after which TLC (solvent system A) indicated the reaction to be complete. Standard isolation and purification of the crude product by column chromatography on silica gel eluting with solvent system A gave the amines $36(1.55 \mathrm{~g}, 62 \%)$ and $32(0.31 \mathrm{~g}, 13 \%)$. Combined yield $1.86 \mathrm{~g}(75 \%)$. The amine 32 was identical (${ }^{1} \mathrm{H}$ NMR and TLC) with an authentic sample prepared earlier by a different route (see Scheme 2). The amine 36 was crystallized from cold propan-2-ol ($10 \mathrm{~cm}^{3}$), m.p. $145-146^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2935$, $1580,1457,1433,1128,1071,968$ and $860 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78(\mathrm{~d}$, $J 7.3,1 \mathrm{H}), 7.72(\mathrm{dd}, J 1.7$ and $8.0,1 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~s}$, $1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHNH} 2), 2.49(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 4 \mathrm{H}), 1.44-$ 1.81 (complex m, 10 H) and $1.31(\mathrm{~m}, 2 \mathrm{H})$. CIMS [Found: 315 $\left(\mathrm{MH}^{+}\right) . \mathrm{MH}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}: 315$] (Found: C, 72.5; H , 8.4; $\mathrm{N}, 8.9 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}$ requires $\mathrm{C}, 72.57 ; \mathrm{H}, 8.33 ; \mathrm{N}, 8.91 \%$).
cis-1-[1-(2-Benzo[b]thienyl)-4-isothiocyanatocyclohexyl]-
piperidine 4.-The method of preparation was as described earlier for the isothiocyanate 2 except starting with the amine 36 $(0.50 \mathrm{~g}, 1.59 \mathrm{mmol})$, to give isothiocyanate 4 (quantitative) as a pale yellow crystalline solid (one spot on TLC, solvent system C). Recrystallization from propan-2-ol ($20 \mathrm{~cm}^{3}$) afforded 4 (0.54 g, 95%), m.p. $134-135^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2935,2855,2114 \mathrm{vs}$ (NCS str), 1602, 1457, 1433, 1368, 1320, 1155 and 964; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.78(\mathrm{~d}, J 7.3,1 \mathrm{H}), 7.72(\mathrm{~d}, J 7.1,1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H})$, $7.01(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{NCS}), 2.42(\mathrm{~m}, 6 \mathrm{H}), 2.01-1.15$ (complex m, 2 H), 1.80-1.94 (complex m, 4 H), $1.56(\mathrm{~m}, 4 \mathrm{H})$ and 1.24-1.38 (complex m, 2 H). CIMS [Found: 357. MH^{+}calc. for $\left.\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}: 357\right]$ (Found: C, 67.3; H, 6.8; N, 7.9. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 67.37 ; \mathrm{H}, 6.78 ; \mathrm{N}, 7.86 \%$).

1-\{1-(4-Nitro-2-benzo[b]thienyl)cyclohexyl\}piperidine 37.To a stirred solution of BTCP $1(2.0 \mathrm{~g}, 6.7 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($17.6 \mathrm{~cm}^{3}$) was added $\mathrm{NaNO}_{2}(1.39 \mathrm{~g}, 20.1 \mathrm{mmol}, 3.0$ equiv.) at $20^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The brown solution was stirred for 3 h when a deep orange-red colour developed. TLC (solvent system D) indicated complete reaction. The reaction mixture was poured into water ($100 \mathrm{~cm}^{3}$), excess of saturated NaHCO_{3} added, and the mixture was extracted with CHCl_{3} ($100 \mathrm{~cm}^{3}$). Fractionation of the product mixture by column chromatography on silica gel eluting with solvent system D gave the nitro compound 37 ($1.38 \mathrm{~g}, 60 \%$) as a yellow oil; 37.fumarate (propan-2-ol), m.p. $184-185^{\circ} \mathrm{C}$ (decomp.); $v_{\max }{ }^{-}$
$\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2980, 2937, 2856, 2806, 1601, 1525, 1500, 1444, $1348 \mathrm{~s}, 1325 \mathrm{~s}, 1294$ and $966 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.28(\mathrm{~d}, J 7.9,1 \mathrm{H}), 8.06$ $(\mathrm{d}, J 8.0,1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J 7.9,1 \mathrm{H}), 2.42(\mathrm{~m}, 4 \mathrm{H}), 2.08$ $(\mathrm{m}, 4 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.64$ (complex $\mathrm{m}, 8 \mathrm{H})$ and $1.31(\mathrm{~m}$, 2 H) (Found for 37-fumarate: $\mathrm{C}, 59.8 ; \mathrm{H}, 6.8 ; \mathrm{N}, 5.6$. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 59.98 ; \mathrm{H}, 6.97$; $\mathrm{N}, 5.38 \%$).

The 5-nitro isomer $38(0.20 \mathrm{~g}, 9 \%)$ was obtained as a minor product; 38 (base) (EtOH), m.p. $128-129^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2937,2857,2805,1525,1500,1443,1340$ s, 1130 and 967 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.71(\mathrm{~d}, J 1.7,1 \mathrm{H}), 8.18(\mathrm{dd}, J 1.7$ and $8.8,1 \mathrm{H})$, $7.79(\mathrm{~d}, J 8.8,1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 4 \mathrm{H}), 1.96-2.18$ (complex m, 4 H), $1.78(\mathrm{~m}, 2 \mathrm{H})$ and $1.20-1.61$ (complex m, 10 H) (Found: $\mathrm{C}, 66.15 ; \mathrm{H}, 7.0 ; \mathrm{N}, 8.1 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C , $66.25 ; \mathrm{H}, 7.02$; N, 8.13%).

Similarly, the 7 -nitro isomer $39(0.46 \mathrm{~g}, 20 \%)$ was obtained as an unstable red oil, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.34(\mathrm{~d}, J 8.0,1 \mathrm{H}), 8.04(\mathrm{~d}, J$ $8.0,1 \mathrm{H}), 7.49(\mathrm{t}, J 8.0,1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~m}$, $4 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~m}, 4 \mathrm{H})$ and $1.33(\mathrm{~m}, 2 \mathrm{H})$. No attempt was made to further purify this compound. HRMS [Found: $344.1561\left(\mathrm{M}^{+}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: 344.1558$].

The positions of nitration were ascertained by direct comparison of the aromatic splitting patterns and chemical shift values of 37-39 with each other and with those of the unsubstituted BTCP as well as from NOE experiments. Thus, as expected from charge distribution considerations, the 4^{\prime}-nitro isomer 37 showed a strongly deshielded $3-\mathrm{H}(\delta 7.92)$ with respect to the unsubstituted BTCP 3-H ($\delta 7.04$) and with respect to the alternative 7^{\prime}-nitro isomer 39 which showed a signal for $3-\mathrm{H}$ at δ 7.18 not much different from BTCP. No observable NOE difference was observed after irradiation of the singlet for $3-\mathrm{H}$ [7.92(s, 1 H)] in 37 on any of the other protons in the benzo $[b]$ thienyl ring thus distinguishing it from the 7 '-nitro isomer 39. BTCP, with adjacent $4-\mathrm{H}$ and $3-\mathrm{H}$ protons showed a weak long-range interaction between $3-\mathrm{H}[7.04(\mathrm{~s}, 1 \mathrm{H})]$ and 4-H [7.79 (d, J7.7, 1 H)] protons (NOESY). Similarly, a small interaction between $3-\mathrm{H}[7.15(\mathrm{~s}, 1 \mathrm{H})]$ and $4-\mathrm{H}[8.71(\mathrm{~d}, J 1.7,1$ $\mathrm{H})$] confirmed the 5 -nitro substitution of 38 .

1-[1-(4-Amino-2-benzo[b]thienyl)cyclohexyl]piperidine

40.-The nitro compound $37(0.88 \mathrm{~g}, 2.56 \mathrm{mmol})$ in EtOH (100 cm^{3}) was catalytically hydrogenated (as described for the reduction of 31 to 32) to give the amine 40 as an unstable crystalline solid ($0.77 \mathrm{~g}, 96 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3449\left(\mathrm{NH}_{2}\right), 3357$ $\left(\mathrm{NH}_{2}\right), 3220\left(\mathrm{NH}_{2}\right), 2930,2851,2801,1618,1573,1468,1344$ and $1289 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.61(\mathrm{~d}, J 9.1,1 \mathrm{H}), 7.43(\mathrm{~m}, 1 \mathrm{H}), 7.30$ $(\mathrm{m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.05-2.25$ (complex m, 4 H) and 1.05-1.95 (complex m, 12 H). CIMS [Found: $230\left(\mathrm{MH}^{+}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}\right) . \mathrm{MH}^{+}$calc. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}$: 315]. No attempt was made to further characterize or purify the amine 40 because of its lability.

1-[1-(4-Isothiocyanato-2-benzo [b]thienyl)cyclohexyl]piperidine 5.-The amine $40(0.77 \mathrm{~g}, 2.72 \mathrm{mmol})$ was treated with CSCl_{2} as for the isothiocyanate 2 to give the isothiocyanate 5 ($0.86 \mathrm{~g}, 97 \%$). Crystallization from EtOH gave 5 ($0.68 \mathrm{~g}, 78 \%$), m.p. $98-100{ }^{\circ} \mathrm{C} ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2936,2855,2804,2113 \mathrm{vs}$ (NCS str), $1562,1512,1455,1421,1293,1155$ and 971; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.69(\mathrm{~d}, J 7.3,1 \mathrm{H}), 7.15-7.24$ (complex m, 3 H), $2.42(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.60$ (complex m, 8 H) and 1.24-1.38 (m, 2 H). CIMS [Found: $272\left(\mathrm{MH}^{+}\right.$$\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$). MH^{+}calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}$: 357] (Found: C, 67.44; $\mathrm{H}, 6.80 ; \mathrm{N}, 7.80 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 67.37 ; \mathrm{H}, 6.78 ; \mathrm{N}$, 7.86%).

1-[1-(5-Isothiocyanato-2-benzo [b]thienyl)cyclohexyl]piperidine 6.-The nitro isomer $38(0.20 \mathrm{~g}, 0.58 \mathrm{mmol})$ was catalytically hydrogenated to the corresponding aniline as described above for the amine 40 and directly transformed into

Table 1 Atomic coordinates ($\times 10^{4}$)

Atom	x	y	z
S(1)	7 181(1)	97(3)	$1765(1)$
C(2)	$6831(2)$	-1 608(5)	$1095(2)$
C(3)	6076(3)	-1352(7)	520(2)
C(4)	$5847(3)$	-2 752(9)	7(2)
C(5)	$6310(3)$	-4 386(8)	37(2)
C(6)	7 032(3)	-4 666(5)	601(2)
C(7)	7 305(2)	- 3 278(4)	$1130(2)$
C(8)	$8030(6)$	-2 986(12)	$1801(4)$
C(9)	$8047(2)$	-1447(3)	$2179(1)$
C(10)	8 629(2)	-859(3)	$2922(1)$
C(11)	9 570(2)	-1 897(4)	$3036(2)$
C(12)	$10274(2)$	-1 273(4)	2 444(2)
C(13)	$10448(2)$	786(4)	2 487(2)
C(14)	9 521(2)	$1832(4)$	2366 (2)
C(15)	$8815(2)$	$1222(3)$	$2957(2)$
$\mathrm{N}(1)$	8 054(2)	-1340(3)	3 615(1)
O(1)	$10914(1)$	$1195(3)$	3 245(1)
S(1)	8 184(2)	-3755(5)	$1802(1)$
$\mathrm{C}\left(8^{\prime}\right)$	$7343(11)$	-660(22)	$1763(6)$
C(1S)	$10157(2)$	- 5 291(3)	4 671(2)
$\mathrm{C}(2 \mathrm{~S})$	$11074(2)$	-4 685(3)	$4354(2)$
$\mathrm{O}(1 \mathrm{~S})$	11 263(1)	- 5 299(3)	3 684(1)
$\mathrm{O}(2 \mathrm{~S})$	$11589(1)$	- 3 592(3)	4 761(1)
O(1W)	8 991(2)	32(3)	5010 (1)
$\mathrm{O}(2 \mathrm{~W})$	7790 (2)	$4875(3)$	3710 (1)

the isothiocyanate $6(0.19 \mathrm{~g}, 65 \%$ yield from 38) as described above. 6.fumarate (propan-2-ol), m.p. $220^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2928,2851,2800,2107$ vs (NCS str), 1600, 1257 and $1156 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J 8.0,1 \mathrm{H}), 7.22(\mathrm{dd}$, $J 8.0$ and $1.7,1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H})$ and $0.80-2.55$ (complex $\mathrm{m}, 20 \mathrm{H}$). CIMS [Found: $357\left(\mathrm{MH}^{+}\right)$. MH^{+}calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~S}_{2}$: 357] HRMS [Found: $356.1370\left(\mathrm{M}^{+}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~S}_{2}$: 356.1381].

1-[1-(7-Isothiocyanato-2-benzo[b]thienyl)cyclohexyl]piperidine 7.-The nitro isomer $39(0.46 \mathrm{~g}, 1.34 \mathrm{mmol})$ was transformed into the isothiocyanate $7(0.28 \mathrm{~g}, 59 \%$) as described above for isothiocyanate 6. 7-fumarate (propan-2-ol), m.p. 177$178{ }^{\circ} \mathrm{C}$ (decomp.); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2929,2854,2111 \mathrm{vs}$ (NCS str), 1603, 1451, 1257, 1170 and 1024; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.64$ (d, J $7.9,1 \mathrm{H}), 7.29(\mathrm{t}, J 7.9,1 \mathrm{H}), 7.17(\mathrm{~d}, J 7.9,1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H})$, $2.44(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H})$ and $1.40-1.70$ (complex m, 10 H). HRMS [Found: $356.1373\left(\mathrm{M}^{+}\right) . \mathrm{M}^{+}$calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2}: 356.1381$] (Found for 7-fumarate: C, 57.7; H, $6.25 ; \mathrm{N}, 5.6 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 60.99 ; \mathrm{H}, 5.97$; $\mathrm{N}, 5.93$).

Single Crystal X-Ray Diffraction of the Fumarate Salt of the Amine 25.- $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NOS} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 0.5\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right), \quad \mathrm{FW}=341.4$, monoclinic space group $P 21 / a, a=14.196(2), b=7.235(1)$, $c=16.835(2) \AA, \quad \beta=93.78(1)^{\circ}, V=1725.3(4) \AA^{3}, \quad Z=4$, $D_{\mathrm{c}}=1.314 \mathrm{mg} \mathrm{mm}^{-3}, \quad \lambda(\mathrm{Cu}-\mathrm{K} \alpha)=1.54184 \AA, \mu=1.836$ $\mathrm{mm}^{-1}, F(000)=728, T=295 \mathrm{~K}$.

A clear colourless $0.15 \times 0.42 \times 0.45 \mathrm{~mm}$ crystal, in the shape of an irregular plate, was used for data collection on an automated Siemens R3m/V diffractometer equipped with an incident beam monochromator. Lattice parameters were determined from 25 centred reflections within $50 \leqslant 2 \theta \leqslant 60^{\circ}$. The data collection range of $h k l$ was $-15 \leqslant h \leqslant 15,0 \leqslant k \leqslant 7$, $0 \leqslant l \leqslant 18$, with $[(\sin \theta) / \lambda]_{\max }=0.55$. Three standards, monitored after every 97 reflections, exhibited random variations with deviations up to $\pm 2.1 \%$ during the data collection. A set of 2216 reflections was collected in the $\theta / 2 \theta$ mode, with scan width $\left[2 \theta\left(K_{\alpha 1}\right)-1.0\right]$ to $\left[2 \theta\left(K_{\alpha 2}\right)+1.0\right]^{\circ}$ and ω scan rate (a function of count rate) from $3.0^{\circ} \mathrm{min}^{-1}$ to $15.0^{\circ} \mathrm{min}^{-1}$. There were 2216 unique reflections, and 2215 were observed with
$F_{\mathrm{o}}>3 \sigma\left(F_{\mathrm{o}}\right)$. The structure was solved and refined with the aid of the SHELXTL system of programs. ${ }^{15}$ A full-matrix leastsquares refinement varied 273 parameters; atom coordinates are presented in Table 1. The H atoms for the benzo $[b]$ thienyl were included using a riding model (coordinate shifts of C applied to attached H atoms, $\mathrm{C}-\mathrm{H}$ distances set to $0.96 \AA$, and H angles idealized). Coordinates for all other H atoms were refined isotropically. Final residuals were $R=0.052$ and $R_{\mathrm{w}}=0.072$ with final difference Fourier excursions of 28 and $-0.24 \mathrm{e}^{\AA^{-3}}$.
The salt of amine $\mathbf{2 5}$ crystallized with the dianionic fumarate on a centre of symmetry. The asymmetric unit consists of the cisbenzo[$b]$ thienylaminium cyclohexanol cation, half of the fumarate dianion and two water molecules bound by an extensive network of hydrogen bonding with the cations and dianion linked through hydrogen bonding to the water molecules. In the cation the planar benzo $[b]$ thienyl rings are oriented trans to the hydroxy on the cyclohexane ring which adopts a chair conformation (Fig. 1). The orientation of the benzo $[b]$ thienyl rings may be further defined by the $\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)=-159.8(2)^{\circ}$ torsion angle. In the crystal this fused ring system is disordered by 180° rotation about the bond to the cyclohexane ring with alternate positions for both $\mathrm{S}(1)\left[\mathrm{S}\left(1^{\prime}\right)\right]$, and $\mathrm{C}(8)\left[\mathrm{C}\left(8^{\prime}\right)\right]$ in an occupancy ratio of 63:37. Overall, bond distances and angles are normal with a $\mathrm{C}-\mathrm{S}$ average of $1.740 \AA$. The $\mathrm{C}(8)-\mathrm{C}(9)=1.282(9)$ and $\mathrm{C}(9)-\mathrm{C}\left(8^{\prime}\right)=1.312(14) \AA$ distances are shorter in this ionic compound than the corresponding bond in a number of substituted benzothiophenes ${ }^{16-18}$ (1.33 to $1.28 \AA$). Tables of bond distances and angles, and anisotropic thermal parameters are available on request from the Cambridge Crystallographic Data Centre.*

* See Instructions for Authors (1992), J. Chem. Soc., Perkin Trans 1, 1992, Issue 1.

Acknowledgements

This work was supported in part by the Office of Naval Research, Mechanics Division. C. D. was an intramural research training award recipient during the course of this work. The authors offer their sincere appreciation to Noel Whittaker and Wesley White for performing NMR and mass spectral analyses of all intermediates and final products reported in this paper and to Joseph Barchi for performing NOE experiments.

References

1 M. C. Ritz, R. J. Lamb, S. R. Goldberg and M. J. Kuhar, Science, 1987, 237, 1219.
2 P. van der Zee, H. S. Koger, J. Gootjes and W. Hespe, Eur. J. Med. Chem., 1980, 15, 363.
3 J. Vignon, V. Pinet, C. Cerruti, J-M. Kamenka and R. Chicheportiche, Eur. J. Pharmacol., 1988, 148, 427.
4 P. Berger, A. Janowski, F. Vocci, P. Skolnick, M. M. Schweri and S. M. Paul, Eur. J. Pharmacol., 1985, 107, 289; C. T. Kennedy and I. Hanbauer, J. Neurochem., 1983, 41, 172.

5 A. H. Newman, Ann. Rep. Med. Chem., 1990, 25, 271.
6 I. Chadieu, J. Vignon, M. Chicheportiche, J-M. Kamanka, G. Trouller and R. Chicheportiche, Pharmacol. Biochem. Behav., 1989, 32, 699.
7 D. A. Shirley and M. D. Cameron, J. Am. Chem. Soc., 1950, 72, 2788; D. A. Shirley and M. D. Cameron, J. Am. Chem. Soc., 1952, 74, 664.
8 P. Geneste, P. Hermann, J-M. Kamenka and A. Pons, Bull. Soc. Chim. Fr., 1975, 7-8, 1619; D. Balderman and A. Kalir, Synthesis, 1978, 1, 24.
9 R. E. Wasylishen, K. C. Rice and U. Weiss, Can. J. Chem., 1975, 53, 414.

10 K. C. Rice, A. Brossi, S. M. Paul, J. Tallman and P. Skolnick, Nature (London), 1979, 278, 854.

11 B. R. de Costa, J. Labelled Compd. Radiopharm., 1991, 29, 165.
12 A. J. Mancuso and D. Swern, Synthesis, 1981, 165; A. J. Mancuso, S-L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480.
13 S. Uemura and A. Toshimitsu, J. Chem. Soc., Perkin Trans. 1, 1978, 1076.

14 L. Rayman, C. Dominguez, B. R. de Costa and M. Eldefrawi, unpublished results.
15 G. M. Sheldrick, SHELXTL80, An Integrated System for Solving. Refining. and Displaying Crystal Structures from Diffraction Data. University of Göttingen, German Democratic Republic, 1980.

16 K. Prout and F. M. Miao, Acta Crystallogr., Sect. B, 1982, 58, 685.
17 H. H. Sutherland and Z. Ali-Adib, Acta Crystallogr., Sect. C, 1986, 42, 696.
18 H. H. Sutherland and A. Rawas, Acta Crystallogr., Sect. C, 1985, 41, 929.

Paper 2/00487I
Received 29th January 1992 Accepted 16th March 1992

[^0]: * $\left(1 \mathrm{psi}=6.9 \times 10^{3} \mathrm{~Pa}\right)$.

